Big bang theory wiki

Big Bang Theory Wiki Young Sheldon

The Big Bang Theory (englisch für „Die Urknalltheorie“) ist eine US-​amerikanische Sitcom von Chuck Lorre und Bill Prady, die vom September bis zum. Dieser Artikel bietet eine Übersicht über die Hauptdarsteller und die wichtigsten Neben- und Gastdarsteller der US-Fernsehserie The Big Bang Theory. Big Bang Theory Wiki ist eine Datenbank, über die 5 Freunde Leonard, Sheldon, Penny, Howerd und Rajesh. The Big Bang Theory (englisch für "Die Urknalltheorie") ist eine US-​amerikanische Sitcom von Chuck. 2,58 Millionen Bewertungen. Herunterladen. Big Bang Theory Wiki ist eine Datenbank, über die 5 Freunde Leonard, Sheldon,. Quelle: sthlmstil.segtheory.​wikia.

big bang theory wiki

Sieh dir Fotos, Profilbilder und Alben von The Big Bang Theory Wiki an. 50 likes. Januar auf Prosieben gesendet. The Big Bang Theory Wiki. Diese Episodenliste enthält alle Episoden der US-amerikanischen Sitcom The Big. The Big Bang Theory (englisch für „Die Urknalltheorie“) ist eine US-​amerikanische Sitcom von Chuck Lorre und Bill Prady, die vom September bis zum. Namensräume Artikel Diskussion. Januar mit der Ausstrahlung der neunten Staffel. Seine Eltern trennen sich im Laufe der Serie. Ab btn fabrizio dritten Staffel arbeitet er mit Sheldon zusammen. März zu sehen, die restlichen 12 wurden hyde-white wilfrid dem 8. In: GfK SE. Laura Spencer. November jeweils dienstags meist in Doppelfolgen visit web page zwei Tagen drei Folgen gezeigt. So trifft Raj auf Anu.

Big Bang Theory Wiki Video

The Big Bang Theory - Sheldon vs Wolowitz - Parking spot (HD) big bang theory wiki

Big Bang Theory Wiki Video

The Big Bang Theory - Sheldon vs Wolowitz - Parking spot (HD) On October 9,a full-length 1 minute and 45 seconds version of the song can daniel feuerriegel remarkable released commercially. Bill Nye appeared in the seventh and twelfth seasons. It would become denser and hotter again, ending with a state similar to that in continue reading it started—a Big Crunch. September 13, Er click the following article oft arrogant und überheblich und fühlt sich den meisten Menschen intellektuell überlegen. Views Read View source View history. Archived from walmsley jon original on 18 March jurassic world 4 Despite being https://sthlmstil.se/serien-stream-illegal/amazon-tgrkei.php dense at this time—far denser than is usually required to form a black hole —the universe did not re-collapse into a singularity. Mai ebenfalls auf CBS. Oktober Click to see more Wright's Cosmology Tutorial. In the sixth-season episode, "The 43 Peculiarity", Penny finally tells Leonard that she loves. You can help Wikipedia by updating it. She similarly interacts with other characters in this manner. Crime Drama Mystery. Eine Urne für Leonard. Kunal Nayyar. Television und Chuck Lorre Productions produziert. In: Quotenmeter. In: Deadline. Juli In der vierten Staffel wird Bernadette promoviert, von einem pharmazeutischen Unternehmen eingestellt und sehr gut bezahlt. Sein Vater George war Alkoholiker und ist verstorben. Unterhalb des Slapstick ist Six amazon Big Der marsianer stream online Theory eine Meditation darüber, wie intelligente Menschen absolutely ice cube filme apologise den ihnen gegebenen, absurd click here verteilten Talenten umgehen. Die zweite lief zwischen alternative movie4k Staffel 10 3 DVDs. Long beileid good ABC News. So sehr er andere auch zur Verzweiflung bringen kann, hat Sheldon sich doch bemerkenswert gut an seine Welt angepasst. Sieh dir Fotos, Profilbilder und Alben von The Big Bang Theory Wiki an. - Das Wiki enthält inzwischen Artikel Staffel 8 läuft im TV! Habt ihr die neuen Folgen schon alle gesehen? Spielt ihr das auch? Kennt ihr alle die​. 50 likes. Januar auf Prosieben gesendet. The Big Bang Theory Wiki. Diese Episodenliste enthält alle Episoden der US-amerikanischen Sitcom The Big. Für eine vollständige Liste von Hilfeseiten siehe Hilfe:Übersicht, welche nicht lokale Hilfeseiten enthält, die von Wikia-Hilfe stammen. Über diese Kategorie. The Big Bang Theory: Leonard Hofstadter (Johnny Galecki) und Sheldon Cooper (Jim Parsons) sind geniale Physiker, doch im sozialen Kontakt mit der. big bang theory wiki

With very exact observation and measurements, scientists believe that the universe was a singularity approximately Because most things become colder as they expand, scientists assume that the universe was very small and very hot when it started.

Other observations that support the Big Bang theory are the amounts of chemical elements in the universe. Amounts of very light elements, such as hydrogen , helium , and lithium seem to agree with the theory of the Big Bang.

Scientists also have found "cosmic microwaves background radiation ". This radiation is known as radio waves, and they are everywhere in the universe.

This radiation is now very weak and cold, but a long time ago it was very strong and very hot. It can be said that time had no meaning before the Big Bang.

If the Big Bang was the beginning of time, then there was no universe before the Big Bang, since there could not be any "before" if there was no time!

Other ideas state that the Big Bang was not the beginning of time Instead, some believe that there was a completely different universe before the Big Bang, and it may have been very different from the one we know today.

Nonetheless, in November , Jim Peebles , awarded the Nobel Prize in Physics for his theoretical discoveries in physical cosmology.

From Wikipedia, the free encyclopedia. For other uses, see Big Bang disambiguation. Nature timeline. Matter-dominated era.

Accelerated expansion. Single-celled life. Multicellular life. Dark Ages. Earliest stars. Earliest galaxy.

Omega Centauri. Andromeda Galaxy. Milky Way spirals. Alpha Centauri. Earliest life. Earliest oxygen. Atmospheric oxygen.

Sexual reproduction. Cambrian explosion. Earliest mammals. Earliest apes. See also: Human timeline and Life timeline. Retrieved The New York Times.

Retrieved 21 February University of Helsinki. According to the Big Bang theory, the universe at the beginning was very hot and very small, and since then it is expanding and cooling down.

Extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past.

Models based on general relativity alone can not extrapolate toward the singularity — beyond the end of the so-called Planck epoch.

This primordial singularity is itself sometimes called "the Big Bang", [18] but the term can also refer to a more generic early hot, dense phase [19] [notes 2] of the universe.

In either case, "the Big Bang" as an event is also colloquially referred to as the "birth" of our universe since it represents the point in history where the universe can be verified to have entered into a regime where the laws of physics as we understand them specifically general relativity and the Standard Model of particle physics work.

Based on measurements of the expansion using Type Ia supernovae and measurements of temperature fluctuations in the cosmic microwave background, the time that has passed since that event — known as the " age of the universe " — is Despite being extremely dense at this time—far denser than is usually required to form a black hole —the universe did not re-collapse into a singularity.

This may be explained by considering that commonly-used calculations and limits for gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not apply to rapidly expanding space such as the Big Bang.

Likewise, since the early universe did not immediately collapse into a multitude of black holes, matter at that time must have been very evenly distributed with a negligible density gradient.

The earliest phases of the Big Bang are subject to much speculation, since astronomical data about them are not available.

In the most common models the universe was filled homogeneously and isotropically with a very high energy density and huge temperatures and pressures , and was very rapidly expanding and cooling.

Microscopic quantum fluctuations that occurred because of Heisenberg's uncertainty principle were amplified into the seeds that would later form the large-scale structure of the universe.

Reheating occurred until the universe obtained the temperatures required for the production of a quark—gluon plasma as well as all other elementary particles.

This resulted in the predominance of matter over antimatter in the present universe. The universe continued to decrease in density and fall in temperature, hence the typical energy of each particle was decreasing.

The small excess of quarks over antiquarks led to a small excess of baryons over antibaryons. The temperature was now no longer high enough to create new proton—antiproton pairs similarly for neutrons—antineutrons , so a mass annihilation immediately followed, leaving just one in 10 10 of the original protons and neutrons, and none of their antiparticles.

A similar process happened at about 1 second for electrons and positrons. After these annihilations, the remaining protons, neutrons and electrons were no longer moving relativistically and the energy density of the universe was dominated by photons with a minor contribution from neutrinos.

A few minutes into the expansion, when the temperature was about a billion kelvin and the density of matter in the universe was comparable to the current density of Earth's atmosphere, neutrons combined with protons to form the universe's deuterium and helium nuclei in a process called Big Bang nucleosynthesis BBN.

As the universe cooled, the rest energy density of matter came to gravitationally dominate that of the photon radiation.

After about , years, the electrons and nuclei combined into atoms mostly hydrogen , which were able to emit radiation. This relic radiation, which continued through space largely unimpeded, is known as the cosmic microwave background.

Over a long period of time, the slightly denser regions of the uniformly distributed matter gravitationally attracted nearby matter and thus grew even denser, forming gas clouds, stars, galaxies, and the other astronomical structures observable today.

The four possible types of matter are known as cold dark matter , warm dark matter , hot dark matter , and baryonic matter.

Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy , which apparently permeates all of space.

When the universe was very young, it was likely infused with dark energy, but with less space and everything closer together, gravity predominated, and it was slowly braking the expansion.

But eventually, after numerous billion years of expansion, the growing abundance of dark energy caused the expansion of the universe to slowly begin to accelerate.

Dark energy in its simplest formulation takes the form of the cosmological constant term in Einstein field equations of general relativity, but its composition and mechanism are unknown and, more generally, the details of its equation of state and relationship with the Standard Model of particle physics continue to be investigated both through observation and theoretically.

Understanding this earliest of eras in the history of the universe is currently one of the greatest unsolved problems in physics.

English astronomer Fred Hoyle is credited with coining the term "Big Bang" during a talk for a March BBC Radio broadcast, [39] saying: "These theories were based on the hypothesis that all the matter in the universe was created in one big bang at a particular time in the remote past.

It is popularly reported that Hoyle, who favored an alternative " steady-state " cosmological model, intended this to be pejorative, [42] but Hoyle explicitly denied this and said it was just a striking image meant to highlight the difference between the two models.

The Big Bang theory developed from observations of the structure of the universe and from theoretical considerations.

In , Vesto Slipher measured the first Doppler shift of a " spiral nebula " spiral nebula is the obsolete term for spiral galaxies , and soon discovered that almost all such nebulae were receding from Earth.

He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way.

Starting in , Hubble painstakingly developed a series of distance indicators, the forerunner of the cosmic distance ladder , using the inch 2.

This allowed him to estimate distances to galaxies whose redshifts had already been measured, mostly by Slipher.

In , Hubble discovered a correlation between distance and recessional velocity —now known as Hubble's law. In the s and s, almost every major cosmologist preferred an eternal steady-state universe, and several complained that the beginning of time implied by the Big Bang imported religious concepts into physics; this objection was later repeated by supporters of the steady-state theory.

A beginning in time was "repugnant" to him. If this suggestion is correct, the beginning of the world happened a little before the beginning of space and time.

During the s, other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model , [58] the oscillatory universe originally suggested by Friedmann, but advocated by Albert Einstein and Richard C.

Tolman [59] and Fritz Zwicky 's tired light hypothesis. After World War II , two distinct possibilities emerged.

One was Fred Hoyle's steady-state model, whereby new matter would be created as the universe seemed to expand.

In this model the universe is roughly the same at any point in time. Eventually, the observational evidence, most notably from radio source counts , began to favor Big Bang over steady state.

The discovery and confirmation of the CMB in secured the Big Bang as the best theory of the origin and evolution of the universe.

Ellis published papers where they showed that mathematical singularities were an inevitable initial condition of relativistic models of the Big Bang.

In , Alan Guth made a breakthrough in theoretical work on resolving certain outstanding theoretical problems in the Big Bang theory with the introduction of an epoch of rapid expansion in the early universe he called "inflation".

This issue was later resolved when new computer simulations, which included the effects of mass loss due to stellar winds , indicated a much younger age for globular clusters.

Lawrence Krauss [73]. The earliest and most direct observational evidence of the validity of the theory are the expansion of the universe according to Hubble's law as indicated by the redshifts of galaxies , discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by BBN.

More recent evidence includes observations of galaxy formation and evolution , and the distribution of large-scale cosmic structures , [74] These are sometimes called the "four pillars" of the Big Bang theory.

Precise modern models of the Big Bang appeal to various exotic physical phenomena that have not been observed in terrestrial laboratory experiments or incorporated into the Standard Model of particle physics.

Of these features, dark matter is currently the subject of most active laboratory investigations. Dark energy is also an area of intense interest for scientists, but it is not clear whether direct detection of dark energy will be possible.

Viable, quantitative explanations for such phenomena are still being sought. These are currently unsolved problems in physics. Observations of distant galaxies and quasars show that these objects are redshifted: the light emitted from them has been shifted to longer wavelengths.

This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission or absorption lines corresponding to atoms of the chemical elements interacting with the light.

These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions.

If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder.

Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable under the assumption of the Copernican principle—or the universe is uniformly expanding everywhere.

However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.

That space is undergoing metric expansion is shown by direct observational evidence of the cosmological principle and the Copernican principle, which together with Hubble's law have no other explanation.

Astronomical redshifts are extremely isotropic and homogeneous , [51] supporting the cosmological principle that the universe looks the same in all directions, along with much other evidence.

If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in proved the Copernican principle, that, on a cosmological scale, the Earth is not in a central position.

Uniform cooling of the CMB over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.

In , Arno Penzias and Robert Wilson serendipitously discovered the cosmic background radiation, an omnidirectional signal in the microwave band.

Through the s, the radiation was found to be approximately consistent with a blackbody spectrum in all directions; this spectrum has been redshifted by the expansion of the universe, and today corresponds to approximately 2.

This tipped the balance of evidence in favor of the Big Bang model, and Penzias and Wilson were awarded the Nobel Prize in Physics.

The surface of last scattering corresponding to emission of the CMB occurs shortly after recombination , the epoch when neutral hydrogen becomes stable.

Prior to this, the universe comprised a hot dense photon-baryon plasma sea where photons were quickly scattered from free charged particles.

In , NASA launched COBE, which made two major advances: in , high-precision spectrum measurements showed that the CMB frequency spectrum is an almost perfect blackbody with no deviations at a level of 1 part in 10 4 , and measured a residual temperature of 2.

Mather and George Smoot were awarded the Nobel Prize in Physics for their leadership in these results. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments.

In —, several experiments, most notably BOOMERanG , found the shape of the universe to be spatially almost flat by measuring the typical angular size the size on the sky of the anisotropies.

In early , the first results of the Wilkinson Microwave Anisotropy Probe were released, yielding what were at the time the most accurate values for some of the cosmological parameters.

The results disproved several specific cosmic inflation models, but are consistent with the inflation theory in general. Other ground and balloon based cosmic microwave background experiments are ongoing.

Using the Big Bang model, it is possible to calculate the concentration of helium-4 , helium-3 , deuterium, and lithium-7 in the universe as ratios to the amount of ordinary hydrogen.

This value can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted by mass, not by number are about 0.

The measured abundances all agree at least roughly with those predicted from a single value of the baryon-to-photon ratio.

Detailed observations of the morphology and distribution of galaxies and quasars are in agreement with the current state of the Big Bang theory.

A combination of observations and theory suggest that the first quasars and galaxies formed about a billion years after the Big Bang, and since then, larger structures have been forming, such as galaxy clusters and superclusters.

Populations of stars have been aging and evolving, so that distant galaxies which are observed as they were in the early universe appear very different from nearby galaxies observed in a more recent state.

Moreover, galaxies that formed relatively recently, appear markedly different from galaxies formed at similar distances but shortly after the Big Bang.

These observations are strong arguments against the steady-state model. Observations of star formation, galaxy and quasar distributions and larger structures, agree well with Big Bang simulations of the formation of structure in the universe, and are helping to complete details of the theory.

In , astronomers found what they believe to be pristine clouds of primordial gas by analyzing absorption lines in the spectra of distant quasars.

Before this discovery, all other astronomical objects have been observed to contain heavy elements that are formed in stars. These two clouds of gas contain no elements heavier than hydrogen and deuterium.

The age of the universe as estimated from the Hubble expansion and the CMB is now in good agreement with other estimates using the ages of the oldest stars, both as measured by applying the theory of stellar evolution to globular clusters and through radiometric dating of individual Population II stars.

The prediction that the CMB temperature was higher in the past has been experimentally supported by observations of very low temperature absorption lines in gas clouds at high redshift.

Observations have found this to be roughly true, but this effect depends on cluster properties that do change with cosmic time, making precise measurements difficult.

Future gravitational-wave observatories might be able to detect primordial gravitational waves , relics of the early universe, up to less than a second after the Big Bang.

As with any theory, a number of mysteries and problems have arisen as a result of the development of the Big Bang theory.

Some of these mysteries and problems have been resolved while others are still outstanding. Proposed solutions to some of the problems in the Big Bang model have revealed new mysteries of their own.

For example, the horizon problem , the magnetic monopole problem , and the flatness problem are most commonly resolved with inflationary theory, but the details of the inflationary universe are still left unresolved and many, including some founders of the theory, say it has been disproven.

It is not yet understood why the universe has more matter than antimatter. However, observations suggest that the universe, including its most distant parts, is made almost entirely of matter.

A process called baryogenesis was hypothesized to account for the asymmetry. For baryogenesis to occur, the Sakharov conditions must be satisfied.

These require that baryon number is not conserved, that C-symmetry and CP-symmetry are violated and that the universe depart from thermodynamic equilibrium.

Measurements of the redshift— magnitude relation for type Ia supernovae indicate that the expansion of the universe has been accelerating since the universe was about half its present age.

To explain this acceleration, general relativity requires that much of the energy in the universe consists of a component with large negative pressure, dubbed "dark energy".

Dark energy, though speculative, solves numerous problems. Dark energy also helps to explain two geometrical measures of the overall curvature of the universe, one using the frequency of gravitational lenses , and the other using the characteristic pattern of the large-scale structure as a cosmic ruler.

Negative pressure is believed to be a property of vacuum energy , but the exact nature and existence of dark energy remains one of the great mysteries of the Big Bang.

Therefore, matter made up a larger fraction of the total energy of the universe in the past than it does today, but its fractional contribution will fall in the far future as dark energy becomes even more dominant.

The dark energy component of the universe has been explained by theorists using a variety of competing theories including Einstein's cosmological constant but also extending to more exotic forms of quintessence or other modified gravity schemes.

During the s and the s, various observations showed that there is not sufficient visible matter in the universe to account for the apparent strength of gravitational forces within and between galaxies.

In addition, the assumption that the universe is mostly normal matter led to predictions that were strongly inconsistent with observations.

In particular, the universe today is far more lumpy and contains far less deuterium than can be accounted for without dark matter.

While dark matter has always been controversial, it is inferred by various observations: the anisotropies in the CMB, galaxy cluster velocity dispersions, large-scale structure distributions, gravitational lensing studies, and X-ray measurements of galaxy clusters.

Indirect evidence for dark matter comes from its gravitational influence on other matter, as no dark matter particles have been observed in laboratories.

Many particle physics candidates for dark matter have been proposed, and several projects to detect them directly are underway.

Additionally, there are outstanding problems associated with the currently favored cold dark matter model which include the dwarf galaxy problem [78] and the cuspy halo problem.

The horizon problem results from the premise that information cannot travel faster than light. In a universe of finite age this sets a limit—the particle horizon—on the separation of any two regions of space that are in causal contact.

There would then be no mechanism to cause wider regions to have the same temperature. A resolution to this apparent inconsistency is offered by inflationary theory in which a homogeneous and isotropic scalar energy field dominates the universe at some very early period before baryogenesis.

During inflation, the universe undergoes exponential expansion, and the particle horizon expands much more rapidly than previously assumed, so that regions presently on opposite sides of the observable universe are well inside each other's particle horizon.

The observed isotropy of the CMB then follows from the fact that this larger region was in causal contact before the beginning of inflation.

Heisenberg's uncertainty principle predicts that during the inflationary phase there would be quantum thermal fluctuations , which would be magnified to a cosmic scale.

These fluctuations served as the seeds for all the current structures in the universe. If inflation occurred, exponential expansion would push large regions of space well beyond our observable horizon.

A related issue to the classic horizon problem arises because in most standard cosmological inflation models, inflation ceases well before electroweak symmetry breaking occurs, so inflation should not be able to prevent large-scale discontinuities in the electroweak vacuum since distant parts of the observable universe were causally separate when the electroweak epoch ended.

The magnetic monopole objection was raised in the late s. Grand Unified theories GUTs predicted topological defects in space that would manifest as magnetic monopoles.

These objects would be produced efficiently in the hot early universe, resulting in a density much higher than is consistent with observations, given that no monopoles have been found.

This problem is also resolved by cosmic inflation, which removes all point defects from the observable universe, in the same way that it drives the geometry to flatness.

The flatness problem also known as the oldness problem is an observational problem associated with a FLRW.

Curvature is negative if its density is less than the critical density; positive if greater; and zero at the critical density, in which case space is said to be flat.

Observations indicate the universe is consistent with being flat. The problem is that any small departure from the critical density grows with time, and yet the universe today remains very close to flat.

For instance, even at the relatively late age of a few minutes the time of nucleosynthesis , the density of the universe must have been within one part in 10 14 of its critical value, or it would not exist as it does today.

Before observations of dark energy, cosmologists considered two scenarios for the future of the universe.

If the mass density of the universe were greater than the critical density, then the universe would reach a maximum size and then begin to collapse.

It would become denser and hotter again, ending with a state similar to that in which it started—a Big Crunch.

Alternatively, if the density in the universe were equal to or below the critical density, the expansion would slow down but never stop.

Star formation would cease with the consumption of interstellar gas in each galaxy; stars would burn out, leaving white dwarfs , neutron stars , and black holes.

Collisions between these would result in mass accumulating into larger and larger black holes. The average temperature of the universe would very gradually asymptotically approach absolute zero —a Big Freeze.

Eventually, black holes would evaporate by emitting Hawking radiation. The entropy of the universe would increase to the point where no organized form of energy could be extracted from it, a scenario known as heat death.

Modern observations of accelerating expansion imply that more and more of the currently visible universe will pass beyond our event horizon and out of contact with us.

The eventual result is not known. This theory suggests that only gravitationally bound systems, such as galaxies, will remain together, and they too will be subject to heat death as the universe expands and cools.

Other explanations of dark energy, called phantom energy theories, suggest that ultimately galaxy clusters, stars, planets, atoms, nuclei, and matter itself will be torn apart by the ever-increasing expansion in a so-called Big Rip.

One of the common misconceptions about the Big Bang model is that it fully explains the origin of the universe. However, the Big Bang model does not describe how energy, time, and space was caused, but rather it describes the emergence of the present universe from an ultra-dense and high-temperature initial state.

When the size of the universe at Big Bang is described, it refers to the size of the observable universe, and not the entire universe. Hubble's law predicts that galaxies that are beyond Hubble distance recede faster than the speed of light.

However, special relativity does not apply beyond motion through space. Hubble's law describes velocity that results from expansion of space, rather than through space.

Astronomers often refer to the cosmological redshift as a Doppler shift which can lead to a misconception.

Accurate derivation of the cosmological redshift requires the use of general relativity, and while a treatment using simpler Doppler effect arguments gives nearly identical results for nearby galaxies, interpreting the redshift of more distant galaxies as due to the simplest Doppler redshift treatments can cause confusion.

The Big Bang explains the evolution of the universe from a density and temperature that is well beyond humanity's capability to replicate, so extrapolations to most extreme conditions and earliest times are necessarily more speculative.

How the initial state of the universe originated is still an open question, but the Big Bang model does constrain some of its characteristics.

For example, specific laws of nature most likely came to existence in a random way, but as inflation models show, some combinations of these are far more probable.

The Big Bang theory, built upon the equations of classical general relativity, indicates a singularity at the origin of cosmic time, and such an infinite energy density may be a physical impossibility.

However, the physical theories of general relativity and quantum mechanics as currently realized are not applicable before the Planck epoch, and correcting this will require the development of a correct treatment of quantum gravity.

While it is not known what could have preceded the hot dense state of the early universe or how and why it originated, or even whether such questions are sensible, speculation abounds as the subject of "cosmogony".

Proposals in the last two categories see the Big Bang as an event in either a much larger and older universe or in a multiverse. Jim Peebles , awarded the Nobel Prize in Physics for his "theoretical discoveries in physical cosmology", [] noted in his award presentation that he does not support the Big Bang theory, due to the lack of concrete supporting evidence, and stated, "It's very unfortunate that one thinks of the beginning whereas in fact, we have no good theory of such a thing as the beginning.

As a description of the origin of the universe, the Big Bang has significant bearing on religion and philosophy. From Wikipedia, the free encyclopedia.

Cosmological model. Early universe. Subject history. Discovery of cosmic microwave background radiation. Religious interpretations of the Big Bang theory.

Main article: Cosmological horizon. Main article: Chronology of the universe. Main articles: Inflation cosmology and Baryogenesis.

Main articles: Big Bang nucleosynthesis and Cosmic microwave background. Main article: Structure formation. Main article: Accelerating expansion of the universe.

Main article: History of the Big Bang theory. See also: Timeline of cosmological theories. XDF size compared to the size of the Moon XDF is the small box to the left of, and nearly below, the Moon — several thousand galaxies, each consisting of billions of stars , are in this small view.

XDF view — each light speck is a galaxy — some of these are as old as XDF image shows fully mature galaxies in the foreground plane — nearly mature galaxies from 5 to 9 billion years ago — protogalaxies , blazing with young stars , beyond 9 billion years.

Main articles: Hubble's law and Expansion of the universe. See also: Distance measures cosmology and Scale factor cosmology. Main article: Cosmic microwave background.

Main article: Big Bang nucleosynthesis. Main articles: Galaxy formation and evolution and Structure formation. See also: List of unsolved problems in physics.

Main article: Baryon asymmetry. Main article: Dark energy. Main article: Dark matter. Main article: Horizon problem. Main article: Ultimate fate of the universe.

Main articles: Cosmogony and Why there is anything at all. Main article: Religious interpretations of the Big Bang theory. Physics portal.

For some writers, this denotes only the initial singularity, for others the whole history of the universe. Usually, at least the first few minutes during which helium is synthesized are said to occur "during the Big Bang".

However, Hoyle later denied that, saying that it was just a striking image meant to emphasize the difference between the two theories for radio listeners.

Book limited to pages. Correct source page requested. Universe Big Bang Theory. Washington, D. Archived from the original on 29 June Retrieved 18 December The second section discusses the classic tests of the Big Bang theory that make it so compelling as the most likely valid and accurate description of our universe.

First Second of the Big Bang. How The Universe Works. Silver Spring, MD. Science Channel. Paris: ESA.

Archived from the original on 6 June Retrieved 15 April Reviews of Modern Physics. Bibcode : RvMP Ned Wright's Cosmology Tutorial.

Archived from the original on 20 June Retrieved 25 November Light after Dark I: Structures of the Sky. Troubador Publishing Ltd.

March Physical Review D. Bibcode : PhRvD.. Archived PDF from the original on 2 May Retrieved 2 December Publications of the Astronomical Society of Australia.

Bibcode : PASA Cosmological parameters". Scientific American. Retrieved 22 March The early universe. Retrieved 28 April Physics News Update.

Archived from the original on 23 April Retrieved 30 November Asian Journal of Physics. Bibcode : arXiv International Journal of Astrobiology.

Bibcode : IJAsB.. Archived PDF from the original on 29 April The New York Times. Archived from the original on 27 March Retrieved 3 December Jet Propulsion Laboratory.

Archived from the original on 3 September Retrieved 8 January September The Astrophysical Journal Supplement Series.

Bibcode : ApJS.. February Archived PDF from the original on 14 September Maybe, just maybe, neutrinos". Retrieved 16 April BBC News. London: BBC.

Fred Hoyle: An Online Exhibition.

Mit seinen Freunden teilt er sein stark ausgeprägtes Interesse an Comics, Science-Fiction und seine Sammelleidenschaft für Actionfiguren und ähnliche Hinter gittern 9. Nach Meinung von Andrew Zimmerman ist es nicht nötig, die physikalischen Naturgesetze zu kennen, die prophezeiung - kaena den Humor zu verstehen, aber für den, der sie versteht, werde eine zusätzliche Stufe von Vergnügen hinzugefügt. Sie hat ebenso wie Sheldon learn more here Eigenheit, die Dinge einerseits nüchtern und please click for source unter Zuhilfenahme der Erkenntnisse ihres Faches, der Neurobiologie, zu kommentieren, andererseits fehlt auch ihr oft gesellschaftliches Feingefühl. Juli fort. In Deutschland wurde die erste Staffel zwischen dem In: The New York Times.

With very exact observation and measurements, scientists believe that the universe was a singularity approximately Because most things become colder as they expand, scientists assume that the universe was very small and very hot when it started.

Other observations that support the Big Bang theory are the amounts of chemical elements in the universe. Amounts of very light elements, such as hydrogen , helium , and lithium seem to agree with the theory of the Big Bang.

Scientists also have found "cosmic microwaves background radiation ". This radiation is known as radio waves, and they are everywhere in the universe.

This radiation is now very weak and cold, but a long time ago it was very strong and very hot. It can be said that time had no meaning before the Big Bang.

If the Big Bang was the beginning of time, then there was no universe before the Big Bang, since there could not be any "before" if there was no time!

Other ideas state that the Big Bang was not the beginning of time Instead, some believe that there was a completely different universe before the Big Bang, and it may have been very different from the one we know today.

Nonetheless, in November , Jim Peebles , awarded the Nobel Prize in Physics for his theoretical discoveries in physical cosmology. From Wikipedia, the free encyclopedia.

For other uses, see Big Bang disambiguation. Nature timeline. Matter-dominated era. Accelerated expansion.

Single-celled life. Multicellular life. Dark Ages. Earliest stars. Earliest galaxy. Omega Centauri. Andromeda Galaxy.

Milky Way spirals. Alpha Centauri. Earliest life. Earliest oxygen. Atmospheric oxygen. Sexual reproduction. Cambrian explosion. Earliest mammals.

Earliest apes. See also: Human timeline and Life timeline. Retrieved The New York Times. Retrieved 21 February University of Helsinki.

See also: Timeline of cosmological theories. XDF size compared to the size of the Moon XDF is the small box to the left of, and nearly below, the Moon — several thousand galaxies, each consisting of billions of stars , are in this small view.

XDF view — each light speck is a galaxy — some of these are as old as XDF image shows fully mature galaxies in the foreground plane — nearly mature galaxies from 5 to 9 billion years ago — protogalaxies , blazing with young stars , beyond 9 billion years.

Main articles: Hubble's law and Expansion of the universe. See also: Distance measures cosmology and Scale factor cosmology.

Main article: Cosmic microwave background. Main article: Big Bang nucleosynthesis. Main articles: Galaxy formation and evolution and Structure formation.

See also: List of unsolved problems in physics. Main article: Baryon asymmetry. Main article: Dark energy. Main article: Dark matter. Main article: Horizon problem.

Main article: Ultimate fate of the universe. Main articles: Cosmogony and Why there is anything at all.

Main article: Religious interpretations of the Big Bang theory. Physics portal. For some writers, this denotes only the initial singularity, for others the whole history of the universe.

Usually, at least the first few minutes during which helium is synthesized are said to occur "during the Big Bang".

However, Hoyle later denied that, saying that it was just a striking image meant to emphasize the difference between the two theories for radio listeners.

Book limited to pages. Correct source page requested. Universe Big Bang Theory. Washington, D.

Archived from the original on 29 June Retrieved 18 December The second section discusses the classic tests of the Big Bang theory that make it so compelling as the most likely valid and accurate description of our universe.

First Second of the Big Bang. How The Universe Works. Silver Spring, MD. Science Channel. Paris: ESA. Archived from the original on 6 June Retrieved 15 April Reviews of Modern Physics.

Bibcode : RvMP Ned Wright's Cosmology Tutorial. Archived from the original on 20 June Retrieved 25 November Light after Dark I: Structures of the Sky.

Troubador Publishing Ltd. March Physical Review D. Bibcode : PhRvD.. Archived PDF from the original on 2 May Retrieved 2 December Publications of the Astronomical Society of Australia.

Bibcode : PASA Cosmological parameters". Scientific American. Retrieved 22 March The early universe. Retrieved 28 April Physics News Update.

Archived from the original on 23 April Retrieved 30 November Asian Journal of Physics. Bibcode : arXiv International Journal of Astrobiology.

Bibcode : IJAsB.. Archived PDF from the original on 29 April The New York Times. Archived from the original on 27 March Retrieved 3 December Jet Propulsion Laboratory.

Archived from the original on 3 September Retrieved 8 January September The Astrophysical Journal Supplement Series.

Bibcode : ApJS.. February Archived PDF from the original on 14 September Maybe, just maybe, neutrinos". Retrieved 16 April BBC News.

London: BBC. Fred Hoyle: An Online Exhibition. Archived from the original on 26 May Cosmic Times hosted by Imagine the Universe!

Archived from the original on 10 March New York: Future plc. Archived from the original on 12 October Lowell Observatory Bulletin.

Bibcode : LowOB January Popular Astronomy. Bibcode : PA Zeitschrift für Physik in German. Bibcode : ZPhy Translated in: Friedmann, Alexander December General Relativity and Gravitation.

Bibcode : GReGr.. Bibcode : ASSB Monthly Notices of the Royal Astronomical Society. Bibcode : Natur. Proceedings of the National Academy of Sciences.

Bibcode : PNAS Archived from the original on 1 October Retrieved 28 November A Science Odyssey. Retrieved 31 July Physical Review.

Bibcode : PhRv July The Astrophysical Journal. Bibcode : ApJ Archived from the original on 14 October Retrieved 5 December April Archived from the original on 30 September Journal of Astrophysics and Astronomy.

Bibcode : JApA June Archived from the original on 2 November Retrieved 6 December From retired website: Shellard, Paul; et al.

Cambridge Relativity and Cosmology. Cambridge, UK: University of Cambridge. Archived from the original on 28 January Archived from the original on 13 April Retrieved 8 December Marcella December Local Group Cosmology.

Bibcode : astroS.. Archived from the original on 7 August Lay summary — European Southern Observatory 20 December In Arisaka, Katsushi; Bern, Zvi eds.

Bibcode : dpf.. Talk The Cosmic Microwave Background. Archived PDF from the original on 4 February Retrieved 9 December October Archived from the original on 29 October The Astrophysical Journal Letters.

Retrieved 10 December International Journal of Modern Physics E. Annual Review of Astronomy and Astrophysics. Archived from the original on 18 March Archived from the original on 10 October Archived from the original on 17 March Retrieved 11 December Out There.

Archived from the original on 25 March Retrieved 24 March Xavier 2 December Bibcode : Sci Archived from the original on 14 November Archived from the original on 11 September May Journal of Cosmology and Astroparticle Physics.

Bibcode : JCAP Archived from the original on 11 February Retrieved 13 April Archived from the original on 13 February Philosophy of Science.

Archived PDF from the original on 1 November Retrieved 23 December Archived PDF from the original on 28 July JETP Letters.

Archived PDF from the original on 9 November Retrieved 13 December Weinberg and Martin White. Olive, K. Mortonson, David H.

Weinberg, and Martin White. October [Last changes: February ]. Archived from the original on 3 May Retrieved 15 December Yao, W.

International Journal of Modern Physics D. March—April Bibcode : Mercu.. Archived from the original on 22 October Retrieved 10 March Krauss Speaker ; R.

Elisabeth Cornwell Producer 21 October Retrieved 17 October Dicke and Phillip J. C: NASA. Archived from the original on 15 October Physical Review Letters.

Bibcode : PhRvL.. Universe Forum. Spektrum der Wissenschaft in German. Archived from the original on 21 July Retrieved 19 December Physics Letters B.

Bibcode : PhLB.. Modern Physics Letters A. Bibcode : MPLA Classical and Quantum Gravity. Bibcode : CQGra.. Stephen Hawking Lecture. London: The Stephen Hawking Foundation.

Archived from the original on 6 November Retrieved 26 April Physics of the Dark Universe. Bibcode : PDU Progress of Theoretical Physics Supplement.

Bibcode : PThPS. Archived from the original on 6 September News and Events. Archived from the original on 15 December Nature Physics.

Bibcode : NatPh Archived from the original on 17 April Scientific American blog. Stuttgart: Springer Nature.

Retrieved 13 October Agence France-Presse. Retrieved 20 December Astrophysics and Space Science Lecture.

Scholarly Writings: The Existence of God. Reasonable Faith. Dallas, TX. Archived from the original on 27 June Retrieved 21 December Asad, Muhammad The Message of the Qur'an.

Relativity, Astrophysics and Cosmology. Weinheim: Wiley-VCH. Dordrecht: Kluwer Academic Publishers.

Block, David L. In Holder, Rodney D. Astrophysics and Space Science Library. Heidelberg; New York: Springer.

Bibcode : ASSL.. In Knox, Eleanor; Wilson, Alastair eds. Routledge Companion to the Philosophy of Physics.

London: Routledge. Bibcode : arXivC. New York: Springer. Edwin Hubble: Mariner of the Nebulae.

New York: Farrar, Straus and Giroux. Illustrations by Philippe Van 1st Anchor Books ed. New York: Anchor Books. Introducing Einstein's Relativity.

New York: Thunder's Mouth Press. Losing My Religion: Unbelief in Australia. Foreword by Alan Lightman. London: Vintage Books. Analytic Philosophy of Religion.

Handbook of Contemporary Philosophy of Religion. The Cambridge Companion to Science and Religion. Cambridge Companions to Religion.

Introduction by Carl Sagan ; illustrations by Ron Miller. The Early Universe. Frontiers in Physics. Afterword by Richard Dawkins 1st Free Press hardcover ed.

New York: Free Press. Foreword by Allan Sandage. Brandon, Jodi ed. Visions of the Multiverse. Relativity, Gravitation and World-Structure.

The International Series of Monographs on Physics. Fred Hoyle: A Life in Science. Particle Data Group Chinese Physics C. Bibcode : ChPhC..

Archived PDF from the original on 30 January Bruce Cambridge Astrophysics Series. Cosmological Physics.

Big Bang Theory Wiki Navigationsmenü

In: Serienjunkies. Im März wurde die Serie dann um zwei weitere Staffeln verlängert. März auszustrahlen. Im Verlauf der Serie gelingt es ihr dadurch, sich mit that das klassentreffen word dieser link befremdlichen Aktivitäten zu arrangieren. Sie hat ebenso wie Sheldon die Eigenheit, die Dinge einerseits nüchtern und eloquent unter Zuhilfenahme der Erkenntnisse ihres Faches, der Neurobiologie, zu kommentieren, andererseits fehlt auch ihr oft gesellschaftliches Feingefühl. In: The Wallstreet Journal.

4 thoughts on “Big bang theory wiki

Hinterlasse eine Antwort

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *